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Stress is a major health problem in our world today. For this reason, it is important to gain an objective
understanding of how average individuals respond to real-life events they observe in environments they
encounter. The aims of this paper are to introduce the concept of observer stress and investigate whether a
computational model can be developed to recognize observer stress using physiological and physical
response sensor signals. The paper discusses the motivations for the investigation and details the exper-
iments for data collection for observers of real-life settings which used unobtrusive methods suited to
real-life environments. It describes an individual-independent support vector machine based model clas-
sifier to recognize stress patterns from observer response signals. A genetic algorithm is used for feature
selection to build a classifier. The classifier recognized observer stress with an accuracy of 98%. The out-
comes of this research provide a new application area for knowledge discovery and data mining to predict
human stress response to real-life environments and a possible future extension on managing stress
objectively.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Stress is part of everyday life and it is widely accepted that
stress which leads to less favorable states (such as anxiety, fear
or anger) is a growing concern for people and society. The term,
stress, was coined by Hans Selye and he defined it as ‘‘the non-spe-
cific response of the body to any demand for change’’ (Selye, 1965).
Stress is the body’s reaction or response to the imbalance caused
between demands and resources available to a person. It is seen
as a natural alarm, resistance and exhaustion (Hoffman-Goetz &
Pedersen, 1994) system for the body to prepare for a fight or flight
response to protect the body from threats and changes. When
experienced for longer periods without being managed, stress
has been widely recognized as a major growing concern because
it has the potential to cause chronic illnesses (e.g. cardiovascular
diseases, diabetes and some forms of cancer) and increase eco-
nomic costs in societies, especially in developed countries (The
American Institute of Stress, 2012, 2013; Lifeline-Australia,
2009). Benefits of stress research range from improving day-to-
day activities, through increasing work productivity to benefitting
the wider society motivating interest, making it a beneficial area of
research and posing some difficult technical challenges for Com-
puter Science (Sharma & Gedeon, 2012).
There are various forms of stressors i.e. demands or stimuli that
cause stress (Zhai & Barreto, 2006; Yuen et al., 2009; Hjortskov
et al., 2004; Healey & Picard, 2005). Some situations where stress-
ors emerge are when playing video (action) games Lin & John,
2006; Lin, Omata, Hu, & Imamiya, 2005, solving difficult mathe-
matical/logical problems (Lovallo, 2005), listening to energetic mu-
sic (Lin & John, 2006), conducting a surgical operation (Sexton,
Thomas, & Helmreich, 2000), driving cars (Healey & Picard, 2000,
2005; Hennessy & Wiesenthal, 1999) and flying airplanes (Haddad,
Walter, Ratley, & Smith, 2001; Roscoe, 1992). Under all these cir-
cumstances, the literature has reported the effect of stressors on
individuals who interacted with stressors directly or were directly
involved in the situation and in the environment. The work in this
paper investigates the effect of a real-life environment on an obser-
ver who observes the environment with a real-life setting that has
a stressor stimulated by individuals in the environment – a novel
area for stress analysis. We coin the term observer stress to mean
the observer of such an environment.

Stressful events or emergency situations cause dynamic
changes in the human body and they can be observed by changes
in the body’s response signals, that is, the externally measurable
reactions. These response signals are involuntarily caused by the
Autonomic Nervous System (ANS). The ANS is made up of the Sym-
pathetic Nervous System (SNS) and the Parasympathetic Nervous
System (PNS). When the body is under stress, activity in the SNS
increases and dominates the activities produced by the PNS, which
changes the body’s response signals. The response signals obtained
from non-invasive methods that reflect reactions of individuals
and their bodies to stressful situations have been used to interpret
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stress. These measures have provided a basis for defining stress
objectively.

Stress response signals used in this paper fall into two catego-
ries – physiological and physical signals. Physiological signals that
have been used for stress analysis include electroencephalogram
(EEG) (Lin & John, 2006; Dharmawan, 2007; Interactive Productline.,
2013; Novák, Lhotská, Eck, & Sorf, 2004; Hoffmann, 2005, galvanic
skin response (GSR) Bakker, Pechenizkiy, & Sidorova, 2011; de
Santos Sierra, Avila, Guerra Casanova, Bailador del Pozo, & Jara
Vera, 2010), electrocardiogram (ECG) (Dishman et al., 2000) and
blood pressure (BP) (Ashton, Savage, Thompson, & Watson,
2012). We define physical signals as signals where changes by
the human body can be seen by humans without the need for
equipment and tools that need to be attached to individuals to
detect general fluctuations. However, sophisticated equipment
and sensors using vision technologies are still needed to obtain
physical signals at sampling rates sufficient for data analysis and
modeling like the ones used in this paper. Physical signals include
video recordings of a person and eye behavior (Haak, Bos, Panic, &
Rothkrantz, 2008).

In this work, EEG signals were used to capture neural activity in
the brain of an observer of an environment. An EEG signal records
complex electrical waveforms at the scalp formed by action
electrical potentials during synaptic excitations and inhibitions of
dendrites in the brain. Previous research shows that relationships
exist between brain activity and stress (Lin & John, 2006;
Dharmawan, 2007; Interactive Productline, 2013; Novák et al.,
2004; Hoffmann, 2005).

Another type of physiological signal obtained from an observer
of an environment for stress recognition was GSR. GSR enables
measurement of the flow of electricity through the skin of a person.
When the person is under stress, the activity in the SNS causes an
increase in the moisture on the skin, which increases the flow of
electricity. As a result, it increases skin conductance (Liao, Zhang,
Zhu, & Ji, 2005). Conversely, the skin conductance is reduced when
the individual becomes less stressed. The fluctuations in skin con-
ductance are recorded as changes in GSR.

A relatively new area of research is recognition of stress using fa-
cial data from videos in the thermal spectrum. Blood flow through
superficial blood vessels, which are situated under the skin and
above the bone and muscle layer of the human body allow thermal
images to be captured. It has been reported in the literature that
stress can be successfully detected from thermal imaging (Yuen
et al., 2009) due to changes in skin temperature under stress. Facial
expressions have been analyzed (Jarlier et al., 2011) and classified
(Zhao & Pietikainen, 2007; Hernández, Olague, Hammoud, Trujillo,
& Romero, 2007; Trujillo, Olague, Hammoud, & Hernandez, 2005)
using thermal imaging but from our understanding, the literature
has not developed computational models for stress recognition
using the feature definitions we present in this work.

In this paper, we use EEG, GSR and video recordings of faces in the
thermal spectrum. We will refer to these sensor signals as primary
stress signals. Use of this set of sensor signals is novel to research
in stress recognition. They are used to develop computational mod-
els for modeling and recognizing stress.

Various computational methods have been used to objectively
define and classify stress to differentiate conditions causing stress
from other conditions. The methods developed have used models
formed from Bayesian networks (Liao et al., 2005; Hong, Ramos,
& Dey, 2012), decision trees (Zhai & Barreto, 2006) fuzzy models
(Kumar, Weippert, Vilbrandt, Kreuzfeld, & Stoll, 2007) and support
vector machines (Dou, 2009). This work uses a novel set of stress
features to model stress based on a support vector machine (SVM).

Large numbers of stress features can be derived from primary
stress signals to classify stress. However, this set of features can in-
clude redundant and irrelevant features which may swamp the
more effective features showing stress patterns. As a consequence,
this could cause a classifier to learn weaker stress patterns and
produce lower quality classifications. Since this paper deals with
sensor data, some features may suffer from corruption as well. In
order to achieve a good classification model which is robust to such
potential features that may reduce the performance of classifica-
tions, appropriate feature selection must take place. A genetic algo-
rithm (GA) could be used to select subsets of features for
optimizing stress classifications. GAs have been successfully used
to select features derived from physiological signals (Park, Jang,
Kim, Huh, & Sohn, 2011; Niu, Chen, & Chen, 2011). In this work,
a GA is used to determine whether a smaller subset of stress fea-
tures exists that better capture observer stress patterns.

This paper presents a computational model of observer stress
for an observer of a real-life environment. The paper describes
the experiments that were conducted to acquire primary stress
sensor signals and details the models of observer stress that were
developed to capture stress patterns across observers of two differ-
ent environment settings – interview and meditation settings. It
presents a method for selecting features from thousands of fea-
tures derived from the stress signals with an aim to improve the
model performance to capture more general stress patterns for
better stress recognition. Further, it presents the results and an
analysis of the results. The paper concludes with a summary of
the findings and suggests directions for future work.

2. Data collection

Two different experiments were conducted which differed on
the type of real-life setting for the observer, who was the experi-
ment subject. One experiment had an interview setting (Interview
experiment) and the other experiment had a meditation setting
(Meditation experiment). Each experiment had a scripted role-play
to stimulate an environment that an observer viewed while they
had their EEG signals, GSR signals and thermal videos recorded.
EEG signals were sourced using the Emotiv system, GSR signals
were sourced by the BodyBugg system developed by SenseWear
and thermal videos were captured using the FLIR infrared camera
model SC620. EEG signals were sourced at a sampling rate of
128 Hz, thermal videos were sampled at 32 Hz with the frame
width and height of 640 and 480 pixels respectively and GSR sig-
nals were sourced with a sampling rate of 0.0167 Hz.

Each experiment took approximately 30 min which included a
role-play that took 15 min. A role-play was acted out by six people.
Consistent experiment room settings including sensor equipment
and furniture locations, and temperature and lighting settings
were used for the experiments. There were one or more viewers
of the environment who took notes of the environment and
watched the role-play just like the observer. The viewers’ reports
validated the stress classes for the environments.

Before the start of each experiment, the observer and viewer(s)
had to understand the requirements of the experiment from a writ-
ten set of experiment instructions and what was involved in the
experiment with the guidance of the experiment instructor. After
providing their consent to participate in the experiment, the exper-
iment instructor attached EEG and GSR sensors to the observer and
calibrated the thermal camera. The viewer was provided with a
questionnaire that they filled in during the experiment to validate
the stress state during the different stages of the role-play. The
experiment instructor signaled the actors to start the role-play.

Surveys are a common tool used in the literature to validate
stress states (Hill & Boyle, 2007). The responses provided ground
truth for the classification models developed in this work. The
questions in the survey asked participants to provide observations
and a relative stress score for each stage of the role-play elicited by
the environment on a seven-point Likert Semantic Scale ranging
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from the value ‘‘Very Calm’’ to ‘‘Neutral’’ through to ‘‘Very Stress-
ful’’. The survey also questioned the stress state of the individuals
and how they felt before and after the role-play environment sim-
ilar to the method reported in Singh, Conjeti, and Banerjee (2013).
Reliability and validity of the experiment settings were evaluated
based on the recommendations presented in Palmer and Hoffman
(2001) and the analysis showed a reliable and valid rating – the
average inter-rater reliability coefficient was 0.71 using Spear-
man’s correlation and the survey responses showed no statistical
significant differences across participants.

In total, there were 25 observers who had their stress signals re-
corded and 40 viewers. The participant cohort was made up of
undergraduate and college students. There were 10 males and 15
females between the ages of 16 and 25 years. The mean age was
18.6 years old with a standard deviation of 2.1. There were 12
observers for the Interview experiment and 13 observers for the
Meditation experiment. The participants had basic experience with
Interview and Meditation environments.

2.1. Interview experiments

The Interview experiment had an interview setting with the
aim of stimulating a stressful environment. The interview role-play
had five Interviewers who interviewed one Interviewee for a hypo-
thetical job position. The Interview Observer and the Interview
Viewer watched the interview with the aim to determine which
Interviewer was more confrontational towards the Interviewee.
This was a way to make the Interview Observer and the Interview
Viewer focus on the environment during the experiment. The setup
of the Interview experiment is presented in Fig. 1.

The results from the survey completed by the Interview View-
ers were used to define stress classes for the different stages of
the role-play. This was also done to assess stress classes for the
meditation role-play in the Meditation experiment. Analysis of sur-
vey responses is a common method used in the literature to vali-
date stress classes for tasks (Hill & Boyle, 2007). The role-play
was divided into seven stages of approximately equal time. Only
the viewer knew about the stages so that they could fill in the
questionnaire for the different stages. Viewers found that the ear-
lier stages of the interview were more tense or stressful and as the
interview progressed through the later stages, the interview envi-
ronment became less stressful. The first stage was the most stress-
ful and the last stage was the least stressful with p < 0.01 according
to the Wilcoxon statistical test.

2.2. Meditation experiments

The environment for the Meditation experiment had the aim of
stimulating a calm environment. For the meditation role-play,
there was a Meditation Conductor, who led the meditation by
reading out a meditation script that the five Meditation Clients
had to listen to and follow.

The experiment instructor provided tasks to the Meditation Ob-
server and the Meditation Viewer to watch the meditation and
determine which client meditated the most. This was a way to
draw their attention away from the Meditation Conductor and
not act like one of the Meditation Clients. That is, to stay as either
an observer or a viewer of the meditation instead of meditating
themselves. Fig. 2 shows the experiment setup.

Results from the survey that the Meditation Viewer did on the
meditation environment were used to define stress classes for the
different stages of the role-play. The approach for obtaining the re-
sults was the same as the approach taken to analyze the survey re-
sponses from the Interview experiment. Viewers found that the
level of stress that the meditation created reduced as the meditation
went into the later stages. The results showed that observing the
last stage of the meditation was the least stressful. According to
the Wilcoxon statistical test, the viewers found the first two stages
of the meditation stressful and the last two stages as not stressful
with p < 0.01.
3. Observer stress classification models

The stress classification models were built using features de-
rived from the stress response signals of observers during the
experiment. There were two types of classification models – a
SVM model and a hybrid of a GA and SVM (GA-SVM). Features
were provided as inputs to each of the classification models for
stress recognition.
3.1. Model input

Features were derived from the stress sensor signals, which
formed inputs to an observer stress classification model. The fea-
ture set included temporal features of the physiological signals
and spatio-temporal features of faces captured by thermal video.
Thermal videos of observers’ faces were divided up into salient vol-
umes where each volume had some section of facial regions (e.g.
mid-forehead) in time series, which formed signals for feature
extraction. The signals were segmented into 5 s intervals with an
overlap of 50%. Statistic and measure values of the segments
formed the stress feature set. These statistic values included the
mean, standard deviation, kurtosis, skewness, interquartile range,
minimum and maximum. Features derived from EEG signals also
included statistics of signals in different frequency bands and mea-
surements for Hjorth parameters and fractal dimensions. There
were 1379 features in total.

For a thermal video of an observer’s face during the course of the
experiment, facial regions in the video were extracted and divided
up into sections as in Fig. 3. A face detection method based on eye
coordinates (Struc & Pavesic, 2009, 2010) and a template matching
algorithm was used to extract a face region. A template of a facial re-
gion was developed from the first frame of a thermal video of the ob-
server’s face. The facial region was extracted using the Pretty
Helpful Development Functions toolbox for Face Recognition (Struc
& Pavesic, 2009, 2010; Struc, 2012), which calculated the intraocu-
lar displacement to detect a facial region in an image. This facial re-
gion formed a template for facial regions in each video frame of the
thermal videos. Facial regions in each frame was extracted using
MATLAB’s Template Matcher system (Mathworks., 2012). The Tem-
plate Matcher was set to search for the minimum difference pixel by
pixel to find the area of the frame that best matched the template.

The facial regions extracted from a video were split into different
sections. Grouped and arranged in order of time of appearance in a
video, the sectioned face regions of video frames formed volumes.
Statistics were calculated for each volume segmented into 5 s inter-
vals like the other stress signals. An example of a thermal facial vol-
ume with a volume of a section of the facial region is shown in Fig. 3.

Data from various frequency bands were extracted from EEG
signals and used to define some EEG features. There are four main
frequency band categories used to analyze EEG signals and they are
presented in Table 1. The band categories are Beta, Alpha, Theta
and Delta. Each band category represents some state for a person.
Beta and alpha waves represent conscious states of a person
whereas theta and delta waves signify unconscious states. Rapid
beta wave frequencies (and concomitant decrease in alpha wave
frequencies) have been found to indicate stress (Lin & John,
2006; Novák et al., 2004; Hoffmann, 2005).

Measurements for Hjorth parameters (Hjorth, 1970) and fractal
dimensions (Katz, 1988) are other measures used in analyzing EEG
signals. Hjorth parameters are time-based characteristics of an EEG
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Fig. 1. Setup for the Interview experiment. The interview environment had Interviewers and an Interviewee. The Interview Observer and Interview Viewer watched the
interview. The observer had their physiological and physical signals recorded and the viewer took notes of the interview. (a) A schematic diagram of the interview experiment
setup. (b) A photograph of the data acquisition system. (c) A photograph of the interview setting setup.
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signal and the three Hjorth parameters are the Activity, Mobility
and Complexity parameters. Suppose x is an EEG signal with values
for N equally spaced timestamps. Then the Activity parameter is
the variance of an EEG signal and is defined by

Activ ityðxÞ ¼
PN

n¼1ðxn � �xÞ2

N
ð1Þ

The Mobility parameter is a measure of the signal mean frequency.
Given that x0 is the derivative of x, then the Mobility parameter is
defined by

MobilityðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Activ ityðx0Þ
Activ ityðxÞ

s
ð2Þ

The Complexity parameter is a measure of the deviation of the EEG
signal from the shape of the sine signal and is defined by

ComplexityðxÞ ¼ Mobilityðx0Þ
MobilityðxÞ ð3Þ

Fractal dimension measures of an EEG signal provides information
of the space filling and self-similarity and can be approximated
using the following definition
Fractal DimensionðxÞ ¼ 1þ logðLÞ
logð2ðN � 1ÞÞ ð4Þ

where

L ¼
XN

n¼2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx�n � x�n�1Þ

2 þ n
N
� ðn� 1Þ

N � 1

� �s
ð5Þ

and

x� ¼ x� xmin

xmax � xmin
ð6Þ

The feature values were normalized by individual to reduce the
effect of individual bias in generating an individual-independent
observer stress recognition model.

3.2. Support vector machine model

SVMs have been widely used in the literature for classification
problems, including classifications based on physiological data
(Cheng, 2012; Paul, Leung, Peterson, Sejnowski, & Poizner, 2010).
Provided a set of training samples, an SVM transforms the data
samples using a nonlinear mapping to a higher dimension with
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Fig. 2. Setup for the Meditation experiment. The meditation environment used a Meditation Conductor and Meditation Clients. The Meditation Observer and Meditation
Viewer watched the meditation. The observer had their physiological and physical signals recorded and the viewer took notes of the meditation. (a) A schematic diagram of
the Meditation experiment setup. (b) A photograph of the data acquisition system. (c) A photograph of the meditation setting setup.

Fig. 3. A thermal facial volume of an observer.
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the aim to determine a hyperplane that partitions data by class or
labels. A hyperplane is chosen based on support vectors, which
are training data samples that define maximum margins from
the support vectors to the hyperplane to form the best decision
boundary. This attempts to address the issue of data overfitting
(Han, Kamber, & Pei, 2012) and helps to generalize classifications
well.

3.3. A genetic algorithm and support vector machine hybrid model

SVMs are not robust to feature sets with redundant and irrele-
vant features for classification, so feature selection methods have
been developed that helps SVM based models to better capture
patterns in the data (Nguyen & De la Torre, 2010; Zhao, Fu, Ji, Tang,
& Zhou, 2011; Lee & Yu, 2012). In this work, a hybrid of an SVM and
a GA were used to reduce the redundant and irrelevant features in
the input feature set for the SVM model. The hybrid was used to
determine whether a feature selection component in the stress
classification system improved the quality of the observer stress
recognition.

GAs are global search algorithms, and have been commonly used
to solve optimization problems (Goldberg, 1989). The search algo-
rithm is based on the concept of natural evolution. It evolves a pop-
ulation of candidate solutions, represented by chromosomes, using
crossover, mutation and selection operations in search for a better
quality population based on some fitness measure. Crossover and
mutation operations are applied to chromosomes to achieve diver-
sity in the population and reduce the risk of the search being stuck
with a local optimal population. After each generation during the
search, the GA selects chromosomes, probabilistically mostly made
up of better quality chromosomes, for the population in the next
generation to direct the search to more favorable chromosomes.



Table 1
EEG frequency band categories.

Band
category

Frequency
range

Person’s state

Beta 13–30 Alertness or anxiety
Alpha 8–13 Relaxation
Theta 4–8 Dream sleep or phase between consciousness

and drowsiness
Delta 0.5–4 Coma or deep sleep
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The initial population for the GA-SVM in this work had all the
features. The number of features used by the chromosomes varied
but the chromosome length was fixed. The length of a chromosome
was equal to the total number of features in the feature space. A
chromosome was a binary string where the index for a bit repre-
sented a feature and the bit value indicated whether the feature
was used in the SVM classification. The fitness measure for a chro-
mosome was the recognition rate of stress produced by a SVM
model calculated using 10-fold cross validation. The architecture
-6

Fig. 4. The GA-SVM observer s
for the GA-SVM classification system is provided in Fig. 4. The
system was implemented with the parameter settings for the GA
given in Table 2.

4. Results and discussion

SVM and GA-SVM were implemented and tested on the data
sets obtained from the Interview and Meditation experiments.
The primary stress signals for observers were provided as input
to the classification systems and the stress classes for Interview
and Meditation environments were validated using the survey re-
sponses, which is the usual method reported in literature for vali-
dating stress classes (Hill & Boyle, 2007). A classification system
generated a feature set and built a classification model using the
feature set and the ground truth provided by the survey responses.
The performance of the model was evaluated using the accuracy
and F-score based on 10-fold cross-validation in recognizing two
stress classes – stressed and not-stressed classes – from the test
input data. The first two stages of the environments were labeled
as stressed and the last two stages were labeled as not-stressed in
tress recognition system.



Table 3
Performance measures for the observer stress computational models using 10-fold
cross validation.

Stress recognition measure SVM SVM with optimized stress features

Accuracy 0.87 0.98
F-score 0.89 0.96

Table 4
Performance measures for the stress computational models using 10-fold cross
validation for observers for environment classification.

Stress recognition measure SVM SVM with optimized stress features

Accuracy 0.79 0.95
F-score 0.82 0.96

Table 5
Performance measures for the stress computational models using 10-fold cross
validation for observers of the interview environment.

Stress recognition measure SVM SVM with optimized stress features

Accuracy 0.84 0.90
F-score 0.80 0.89

Table 6
Performance measures for the stress computational models using 10-fold cross
validation for observers of the meditation environment.

Stress recognition measure SVM SVM with optimized stress features

Accuracy 0.92 0.99
F-score 0.92 0.98

Table 2
Implementation settings for the genetic algorithm.

GA parameter Value/setting

Population size 100
Number of generations 2000
Crossover rate 0.8
Mutation rate 1/(length of the chromosome)
Crossover type scattered crossover
Mutation type uniform mutation
Selection type stochastic uniform selection
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accordance with the results of the survey responses. Stress recog-
nition results produced by the SVM and GA-SVM systems are pre-
sented in Table 3.

Stress recognition rates were significantly better when feature
selection was incorporated in stress classification system accord-
ing to the Student’s T-test (p < 0.01). In addition, results for the
classification systems show that observers showed characteristics
in their physiological and physical response signals that were dif-
ferent during the different times of the environment. The patterns
in the response signals in the earlier stages of the environments
were different to the patterns in the later stages.
Table 7
Performance measures for the stress computational models using 10-fold cross validation

Stress recognition
measure

Stress recognition
by stages

Stress recognition
by environments

Accuracy 0.96 0.92
F-score 0.95 0.9
The classification systems were provided stress response signals
categorized by the type of environment setting – interview or med-
itation setting. Classification results for the environment setting
based on the response signals of observers are provided in Table 4.

The classification systems captured better observer stress pat-
terns to distinguish whether the observer was stressed during a par-
ticular stage of an environment (performance results in Table 3)
than classification systems that distinguished whether the observer
was viewing an Interview or Meditation environment (performance
results in Table 4). Statistical analysis showed that observer stress
recognition rates were better for classification systems that classi-
fied stress classes based on the stage of the environment (p < 0.05).
Results from Tables 3 and 4 also show that stress patterns of observ-
ers were common for a particular stage of the environment irrespec-
tive of the environment setting. For future work, stress signals could
be modeled for more than two environments and investigation can
be done to determine whether stress patterns captured in some of
the environments can be used to recognize stress in other environ-
ments. Future work could also investigate developing models that
provide better classification rates to recognize environments that
observers viewed using stress response signals from observers.

Stress response signals obtained from the Interview experiment
was modeled using the SVM and GA-SVM classification systems
with the first two stages of the interview environment labeled as
stressed and the last two stages labeled as not-stressed. Results for
the performance of the classification systems are given in Table 5.

Similarly, the stress response signals for the observers of the
Meditation experiment were modeled using the SVM and GA-
SVM classification systems. Stress recognition results for the sys-
tems are presented in Table 6.

For the different environment stages, the classification systems
captured better stress patterns for the meditation environment than
the interview environment (p < 0.01). This is the case because the
meditation environment might have influenced the stress levels
for observers more over the course of the environment than the
interview environment. The results correlate with the experiment
survey responses, which show that the change in stress for the med-
itation environment was greater than the interview environment.

Feature sets selected by the GAs in the GA-SVM classification
systems showed that the EEG band power feature was common
to all the feature sets. This suggests that the band power feature
had a stronger relationship with stress classes than other types
of features used in this paper. SVM and GA-SVM were modeled
with the EEG band power features only and their performance re-
sults for observer stress recognition are given in Table 7. The stress
recognition results could not be differentiated from the results ob-
tained from the GA-SVM classification systems for the investiga-
tions done to report results in Tables 3–6 (p > 0.1).
5. Conclusion and future work

Computational models of stress for observers of real-life envi-
ronments were developed based on a SVM using real-world stress
data sets formed from the Interview and Meditation experiments.
The data sets were made up of physiological and physical sensor
signals, which were provided to individual-independent observer
for observers using EEG band power features as input.

Stress recognition by stages
for interview environment

Stress recognition by stages
for meditation environment

0.86 0.95
0.88 0.95
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stress recognition systems to capture stress patterns in the data for
the interview and meditation environments. Observer stress pat-
terns were successfully captured by the computational models
for the different environments. In addition, relative stress patterns
were successfully captured by the models irrespective of the envi-
ronment. This work provides a method to recognize observer stress
and determine whether an environment is stressful or not stress-
ful. Our future work will extend on the stress recognition model,
which we developed in this work, to provide a measure for multi-
ple stress levels to show the different degrees of stress shown by
individuals over particular moments in an environment. Other
future work will include investigating methods for stress analysis
for observers of other types of environments and modeling online
observer stress analysis, which would provide real-time feedback
on stress.
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